Why do the second row transition metal atoms prefer $5s^14d^{m+1}$ to $5s^24d^m$?

Numerical Hartree-Fock studies

Toshikatsu Koga¹, Hidenori Aoki¹, Hiroshi Tatewaki²

¹ Department of Applied Chemistry, Muroran Institute of Technology, Muroran, Hokkaido 050, Japan

² Computation Center, Nagoya City University, Nagoya, Aichi 467, Japan

Received February 15, 1995/Final revision received March 30, 1995/Accepted March 31, 1995

Abstract. Numerical Hartree–Fock (NHF) calculations have been performed for 332 ground and low-lying excited states of the fifth period atoms Rb through Xe, with our special interest in the states arising from the $5s^24d^m$, $5s^{1}4d^{m+1}$, and $5s^0$ $4d^{m+2}$ configurations of the second row transition metal atoms. Among various properties, orbital energies and mean values of r of the outermost orbitals of each symmetry are presented as well as total energies. It is discussed in some detail why the second row transition metal atoms have a tendency to prefer s^1d^{m+1} as the ground configuration in contrast to the preferred s^2d^m configuration in the first row transition metal atoms. Our systematic NHF computations reported in this and the previous papers conclude that the Hartree–Fock method correctly predicts the experimental ground state of the atoms He through Xe with the sole exception for Zr.

Key words: Transition metal atoms – Ground and low-lying excited states – Numerical Hartree–Fock approximation

1. Introduction

Numerical Hartree–Fock (NHF) calculations have been performed for the ground states of many neutral atoms, cations [1-9], and anions [9]. In contrast to the ground state, few NHF results have been published [4, 5, 10-12] for excited states of atoms and atomic ions. Recently, we reported systematic NHF results for low-lying excited states of the atoms He to Ar [13], K to Kr [14], and cationic species from the lanthanide atoms [15]. In the present study, we consider the fifth period atoms Rb through Xe with the following configurations:

Rb:	$5s^1$, $5p^1$, and $4d^1$;
Sr:	$5s^2$, $5s^15p^1$ and $5s^14d^1$;
Y to Ag:	$5s^24d^m$, $5s^14d^{m+1}$, and $5s^04d^{m+2}$;
Cd:	$4d^{10}5s^2$, $4d^{10}5s^15p^1$, and $4d^{10}5s^15d^1$;
In to I:	$5s^25p^m$ and $5s^15p^{m+1}$;
Xe:	$5s^25p^6$, $5s^25p^56s^1$, $5s^25p^56p^1$, and $5s^25p^55d^1$.

All the present NHF calculations were performed with an enhanced version of MCHF72 [16], and care was taken to ensure that the total energies are accurate to nine or more significant figures. Although we have calculated total 332 states arising from the above configurations, we give the information on the ground state, and the lowest and highest excited states of the respective configurations.

2. Results and discussion

Table 1 summarizes the total energies, excitation energies, orbital energies ε_i , and mean electron-nucleus distances, $\langle r \rangle_i$, for the outermost orbitals of each symmetry $i \ (= s, p, d)$. All values are given in Hartree atomic units.

2.1. Atoms Rb and Sr

In the Rb atom, the ground electron configuration is $[Kr]5s^1$, where the 5s orbital is diffuse reflecting a large screening effect of the Kr core. As an angular momentum of the orbital increases, in which the excited electron moves, the diffuseness largely increases. In Sr, the 5p orbital of $5s^15p^{11}P$ is fairly diffuse in comparison with that of $5s^15p^{13}P$. The broadness of the 5p atomic orbital (AO) in Sr ¹P arises from a repulsive exchange potential between the 5s and 5p electrons as in cases of Be $2s^1$ $2p^{11}P$ [5, 10, 11, 17, 18], Mg $3s^13p^{11}P$ [13], and Ca $4s^14p^{11}P$ [14].

2.2. Atoms Y through Cd

In Fig. 1, we plot the total energy difference (ΔE) between the lowest state arising from $ns^1(n-1)d^{m+1}$ and that from $ns^2(n-1)d^m$:

$$\Delta E = \text{TE}[ns^{1}(n-1)d^{m+1}] - \text{TE}[ns^{2}(n-1)d^{m}], \qquad (1)$$

where TE stands for the total energy and n is a principal quantum number of AOs; n = 4 for the first row transition atoms and n = 5 for the second row transition atoms. It is seen that for the first row transition metal atoms the lowest state from $4s^23d^m$ is lower than that from $4s^13d^{m+1}$ except for Cr and Cu. The ground state therefore arises from $4s^23d^m$ except these two atoms. For the second row transition metal atoms, however, the lowest state from $5s^13d^{m+1}$ is lower than that from $5s^24d^m$ except for Y and Mn and the ground state has the configuration of $5s^14d^{m+1}$ except for Y, Tc, and Pd: the ground configuration for Pd is $5s^04d^{10}$. The reason is discussed below for the different preference of the ground configurations between the first and second row transition metal atoms.

In Fig. 2, we give the *d* orbital energies of the lowest states arising from the $4s^23d^m$, $4s^13d^{m+1}$, $5s^24d^m$, and $5s^14d^{m+1}$ configurations. It is interesting that the 4*d* orbital energies of $5s^14d^{m+1}$ are nearly equal to the 3*d* orbital energies of $4s^13d^{m+1}$. Then the Koopmans' theorem suggests the similarity of the *d* ionization energies in the $5s^14d^{m+1}$ and $4s^13d^{m+1}$ configurations, but this is not true. We have calculated ionization energies (IEs) using Δ SCF method:

$$IE = TE[ns^{1}(n-1)d^{m}] - TE[ns^{1}(n-1)d^{m+1}].$$
 (2)

Results are shown in Fig. 3 where IEs for K, Ca, Rb, and Sr are defined as

$$IE = TE[ns^{m-1}] - TE[ns^{m-1}(n-1)d^{1}] \quad (m = 1, 2).$$
(3)

<u></u>
a.u
.5
F
е е
×
1gr
ſ
th
Rb
SU
on
at
the
of
cs
stal
<u>.</u>
uo.
sctr
ele
ng
<u>.</u>
Ň
r je
g
ılts
est.
ц.
00
Ţ
ITe
lari
Η
ica
ner
lun
2
e 1.
able
Ë

					Orbital er s, p, and a	nergies of out l orbitals	ermost	Mean valu s, p, and d	e of r for out orbitals	ermost
Atom	Configuration	State ^a	- TE	AE	$-\varepsilon_s$	$-\varepsilon_p$	Ed	$\langle r \rangle_s$	$\langle r \rangle_p$	$\langle r \rangle_d$
37 Rb	$\begin{bmatrix} Kr \end{bmatrix} 5s(1)$	² S	2938.35745	0.0000	0.13787	0.81007	4.73229	5.63187	1.73495	0.52133
	[Kr] 5p(1)	4 ²	2938.31008	0.04737	1.57141	0.09016	4.78179	1.49963	7.64549	0.52132
	[Kr] 4d(I)	d^2	2938.28005	0.07740	1.58293	0.87083	0.06018	1.50001	1.73034	8.90492
38 Sr	[Kr] 5s(2)	S ¹	3131.54569	0.00000	0.17846	1.09816	5.69440	4.63297	1.57762	0.49501
	[Kr] 5s(1)5p(1)	^{3}p	3131.51075	0.03494	0.23679	0.14051	5.72781	4.49152	5.62903	0.49501
		^{1}P	3131.45490	0.09079	0.23074	0.08131	5.77229	4.05118	8.33687	0.49499
	[Kr] 5s(1)4d(1)	D_{E}	3131.48454	0.06115	0.18079	1.04728	0.12246	4.74531	1.58842	3.81369
		Q_1	3131.45530	0.09039	0.14555	1.04182	0.10799	5.22088	1.59115	3.41910
39 Y	[Kr] 5s(2)4d(1)	D^2	3331.68417	0.00000	0.19614	1.30119	0.24985	4.30000	1.47117	2.43521
	[Kr] 5s(1)4d(2)	^{4}F	3331.66876	0.01541	0.19399	1.21792	0.19518	4.41822	1.48418	2.75212
		2 ²	3331.56025	0.12392	0.19877	1.26827	0.11113	4.37182	1.47778	3.19552
	[Kr] 5s(0)4d(3)	^{4}F	3331.58402	0.10015	2.01664	1.16833	0.14184	1.32596	1.49276	3.09849
		${}^{2}D_{1}$	3331.50071	0.18346	2.07029	1.21887	0.10728	1.32333	1.48671	3.42097
40 Zr	[Kr] 5s(1)4d(3)	^{5}F	3539.00960	0.00000	0.20568	1.38749	0.25049	4.17531	1.39797	2.33224
		s p	3538.97245	0.03715	0.20951	1.39735	0.22931	4.14341	1.39661	2.37613
		$^{1}D[d(^{2}D_{1})]$	3538.85353	0.15607	0.17510	1.42513	0.18278	4.54116	1.39480	2.41337
	[Kr] 5s(2)4d(2)	^{3}F	3538.99506	0.01454	0.20729	1.48760	0.33676	4.09185	1.38557	2.10449
		1S	3538.86396	0.14564	0.21611	1.51721	0.21259	4.00620	1.38131	2.31028
	[Kr] 5s(0)4d(4)	sD ≤	3538.93212	0.07748	2.22627	1.31643	0.17602	1.25973	1.40740	2.57102
		$^{1}S_{0}$	3538.74675	0.26285	2.30860	1.39350	0.12265	1.25578	1.39907	2.85819
41 Nb	[Kr] 5s(1)4d(4)	a_{2}	3753.59773	0.00000	0.21559	1.55699	0.30065	3.98545	1.32429	2.07123
		$^{4}D[d(^{5}D)]$	3753.54987	0.04786	0.16148	1.56900	0.31036	4.77856	1.32577	2.00285
		${}^{2}S[d({}^{1}S_{0})]$	3753.33043	0.26730	0.20681	1.61441	0.20614	4.07778	1.31872	2.20301
	[Kr] 5s(0)4d(5)	éS	3753.55453	0.04320	2.43154	1.46251	0.21554	1.20202	1.33447	2.23568
		^{2}P	3753.32143	0.27630	2.50386	1.52977	0.15990	1.19859	1.32774	2.39282

Table 1	l. (Continued)									
					Orbital ene s, p, and d	ergies of outer orbitals	most	Mean valu s, p, and d	e of r for oute orbitals	rmost
Atom	Configuration	State ^a	– TE	ΔE	- £s	- 5 p	- Ed	<r><!--</th--><th>$\langle r \rangle_p$</th><th>$\langle r \rangle_d$</th></r>	$\langle r \rangle_p$	$\langle r \rangle_d$
	[Kr] 5s(2)4d(3)	${}^{4}F$ ${}^{2}D_{1}$	3753.55203 3753.40186	0.04570 0.19587	0.21660 0.22252	1.67227 1.69553	0.40587 0.31431	3.92840 3.87073	1.31263 1.30966	1.98610 1.98610
42 Mo	· [Kr] 5s(1)4d(5)	S ₂	3975.54950 3975.49783	0.00000 0.05167	0.22273 0.16505	1.72363 1.74085	0.35792 0.37295	3.84193 4.67620	1.26042 1.26158	1.87516 1.82678
	[Kr] 5s(2)4d(4)	$d_1^{S_1}$	3975.21897 3975.44332 3975 14689	0.33053 0.10618 0.40761	0.18944 0.22466 0.23378	1.77891 1.85737 1 89561	0.27290 0.47001 0.34055	4.22196 3.79381 3.71062	1.25654 1.24904 1.2480	1.92860 1.74696 1 83934
	[Kr] 5s(0)4d(6)	${}^{5}D$	3975.40565 3975.16020	0.14385 0.38930	2.66769 2.73067	1.69724	0.18460	1.14935 1.14663	1.26797	2.04573 2.14367
43 Tc	[Kr] 5s(2)4d(5)	6S 4G 2P	4204.78874 4204.68030 4204 44968	0.00000 0.10844 0.33906	0.23127 0.23343 0.23849	2.04122 2.05198 2.07543	0.54395 0.50607 0.47676	3.68481 3.66418 3.61000	1.19303 1.19198 1 18074	1.62024 1.63756 1.63766
	[Kr] 5s(1)4d(6)	${}^{2}S[d(^{1}S_{0})]$	4204.78135 4204.73930 4204.46438	0.00739 0.04944 0.32436	0.22333 0.17671 0.21246	1.91368 1.92866 1.96045	0.37851 0.39148 0.30811	3.77697 4.40476 3.89060	1.20217 1.20291 1.19878	1.74562 1.71689 1.79350
	[Kr] 5s(0)4d7)	${}^{4}F$	4204.69215 4204.54212	0.09659 0.24662	2.89685 2.92776	1.80954 1.83822	0.25371 0.22938	1.10244 1.10119	1.20982 1.20758	1.88212
44 Ru	[Kr] 5s(1)4d(7)	${}^{5}_{F}$ ${}^{3}_{F}[d^{(4}F)]$ ${}^{1}_{D}[d^{(2}D_{1})]$ ${}^{5}_{D}$	4441.53949 4441.50732 4441.33610 4441.33510	0.00000 0.03217 0.20339	0.22243 0.18702 0.19837 0.22000	2.10125 2.11387 2.13069	0.41278 0.42385 0.38254 0.56002	3.73560 4.19313 4.01876	1.15057 1.15102 1.14930	1.63011 1.61357 1.63896
	[Kr] 5s(0)4d(8)	3F S ¹ S ¹	4441.14388 4441.14388 4441.47729 4441.31475	0.05214 0.39561 0.06220 0.22474	0.24634 0.24634 3.12667 3.15516	2.24131 2.27335 1.98197 2.00842	0.25585 0.27852 0.25585	3.51028 3.51028 1.06001 1.05895	1.14161 1.13897 1.15786 1.15603	1.27236 1.57236 1.74692 1.77169
45 Rh	[Kr] 5s(1)4d(8)	4 F 2 F 2 S	4685.88170 4685.85867 4685.68447	0.00000 0.02303 0.19723	0.22162 0.19643 0.21662	2.29115 2.30101 2.31357	0.45020 0.45896 0.41858	3.70246 4.01766 3.75782	1.10403 1.10429 1.10277	1.53146 1.52227 1.54441

284

_
(pen
ntin
õ
ble
Ta

					Orbital ene s, p, and d	ergies of outer orbitals	most	Mean valu s, p, and d	e of <i>r</i> for oute orbitals	rmost
Atom	Configuration	State ^ª	– TE	ΔE	- Es	- 5 ^p	- Ed	$\langle r \rangle_{\rm s}$	$\langle r \rangle_p$	$\langle r \rangle_d$
	[Kr] 5s(0)4d(9)	D^2	4685.84699	0.03471	3.35800	2.15662	0.30465	1.02132	1.11098	1.63289
	[Kr] 5s(2)4d(7)	^{4}F	4685.80125	0.08045	0.24711	2.44092	0.61135	3.46718	1.09555	1.45117
		${}^{2}D_{1}$	4685.59994	0.28176	0.25011	2.45705	0.56421	3.44194	1.09436	1.46617
46 Pd	[Kr] 5s(0)4d(10)	¹ S	4937.92102	0.0000	3.58731	2.33009	0.33600	0.98596	1.06857	1.53306
	[Kr] 5s(1)4d(9)	^{3}D	4937.89347	0.02755	0.22097	2.48385	0.49001	3.67481	1.06174	1.44600
		D^1	4937.87881	0.04221	0.20503	2.49064	0.49612	3.86910	1.06187	1.44136
	[Kr] 5s(2)4d(8)	3F	4937.78303	0.13799	0.25365	2.64286	0.65735	3.38086	1.05371	1.37785
		1 S	4937.57086	0.35016	0.25635	2.65825	0.61483	3.35894	1.05271	1.38904
47 Ag	[Kr] 5s(1)4d(10)	² S	5197.69847	0.0000	0.21998	2.67682	0.53740	3.65649	1.02321	1.36980
	[Kr] 5s(2)4d(9)	^{2}D	5197.51789	0.18058	0.25965	2.84773	0.70606	3.30399	1.01545	1.31211
48 Cd	[Kr] 4d(10)5s(2)	¹ S	5465.13314	0.00000	0.26486	3.05350	0.76366	3.23749	0.98039	1.25209
	[Kr] 4d(10)5s(1)5p(1)	^{3}P	5465.05353	0.07961	0.35194	0.17948	0.81460	3.12580	4.13932	1.24745
		1 P	5464.97862	0.15452	0.35166	0.10019	0.88182	2.86943	6.46130	1.24500
	[Kr] 4d(10)5s(1)5d(1)	^{3}D	5464.93511	0.19803	0.43591	3.24390	0.05655	2.91782	0.97998	10.21767
		U ¹	5464.93286	0.20028	0.44243	3.25131	0.05426	2.89355	0.97999	10.93826
49 In	[Kr] 4d(10)5s(2)5p(1)	^{2}P	5740.16916	0.00000	0.37266	0.19728	1.06314	2.84449	3.77795	1.15692
	[Kr] 4d(10)5s(1)5p(2)	4 p	5740.08334	0.08582	0.48895	0.24443	1.09857	2.79734	3.50110	1.15422
		^{2}P	5739.91665	0.25251	0.37930	0.17227	1.15921	2.60323	4.16178	1.15202
50 Sn	[Kr] 4d(10)5s(2)5p(2)	^{3}P	6022.93170	0.0000	0.47643	0.26504	1.36905	2.58591	3.24826	1.08040
		d_1	6022.89692	0.03478	0.48233	0.23259	1.37819	2.58079	3.32586	1.08017
		1 ²	6022.84697	0.08473	0.49217	0.18759	1.39304	2.57214	3.46307	1.07982
	[Kr] 4d(10)5s(1)5p(3)	sS	6022.85068	0.08102	0.63498	0.31128	1.39628	2.55719	3.09622	1.07868
		^{1}b	6022.56359	0.36811	0.48221	0.20788	1.46222	2.46414	3.44414	1.07673
51 Sb	[Kr] 4d(10)5s(2)5p(3)	4S	6313.48532	0.00000	0.58177	0.33471	1.68787	2.39017	2.90114	1.01640
		^{2}D	6313.42622	0.05910	0.58894	0.29925	1.69937	2.38590	2.95188	1.01615
		^{2}P	6313.38765	0.09767	0.59399	0.27657	1.70735	2.38286	2.98866	1.01599

					Orbital ene $s, p, and d$	rrgies of outer orbitals	most	Mean value s, p, and d c	: of <i>r</i> for outer orbitals	most
Atom	Configuration	State ^a	– TE	AE	£3	— ε _p	- Ed	$\langle r \rangle_{\rm s}$	$\langle r \rangle_p$	$\langle r \rangle_d$
	[Kr] 4d(10)5s(1)5p(4)	^{4}P	6313.23804	0.24728	0.72771	0.32194	1.73825	2.36043	2.88659	1.01451
		2 P	6313.01768	0.46764	0.53600	0.28104	1.77696	2.30138	3.01120	1.01353
52 Te	[Kr] 4d(10)5s(2)5p(4)	^{3}p	6611.78406	0.0000	0.70056	0.35983	2.03829	2.22797	2.69137	0.96118
		D^1	6611.74140	0.04266	0.70488	0.34146	2.04529	2.22607	2.71099	0.96106
		1 <i>S</i>	6611.67829	0.10577	0.71161	0.31471	2.05606	2.22309	2.74211	0.96088
	[Kr] 4d(10)5s(1)5p(5)	зp	6611.45555	0.32851	0.81616	0.35478	2.09107	2.20164	2.68072	0.95959
		^{1}P	6611.29499	0.48907	0.67144	0.33211	2.11393	2.17732	2.72833	0.95911
53 1	[Kr] 4d(10)5s(2)5p(5)	^{2}P	6917.98090	0.0000	0.82112	0.40318	2.40121	2.09443	2.50175	0.91303
	[Kr] 4d(10)5s(1)5p(6)	² S	6917.56518	0.41572	0.90035	0.39993	2.45638	2.07051	2.49706	0.91168
54 Xe	[Kr] 4d(10)5s(2)5p(6)	1 _S	7232.13836	0.00000	0.94441	0.45729	2.77788	1.98096	2.33798	0.87045
	[Kr] 4d(10)5s(2)5p(5)6s(1)	3Р	7231.82958	0.30878	0.12108	0.61595	2.97178	6.44840	2.23555	0.86956
		^{1}P	7231.82424	0.31412	0.11531	0.62092	2.97713	6.75497	2.22915	0.86957
	[Kr] 4d(10)5s(2)5p(5)6p(1)	3S	7231.80035	0.33801	1.11896	0.09167	2.99997	1.93230	7.81434	0.86953
		^{1}P	7231.78756	0.35080	1.13432	0.07861	3.01497	1.93206	8.86498	0.86954
	[Kr] 4d(10)5s(2)5p(5)5d(1)	^{3}D	7231.79117	0.34719	1.05329	0.58644	0.08438	1.94118	2.25416	5.47615
		^{1}P	7231.76552	0.37284	1.15107	0.67499	0.05658	1.93178	2.22106	10.41388

^a The symbol in the brackets denotes the coupling in the 4d shell

286

Table 1. (Continued)

Fig. 1. Total energy difference between the lowest states from $ns^2(n-1)d^m$ and $ns^1(n-1)d^{m+1}$ configurations

Fig. 2. The *d* orbital energies for $ns^2(n-1)d^m$ and $ns^1(n-1)d^{m+1}$ configurations

In Fig. 3, we find that the IEs for the second row transition metal atoms are always larger than those of the corresponding atoms in the first row transition series. The IE difference between the two series of the transition metal atoms increases as we move along the period. Thus, the electron in 4d AO is stabler than that in the 3d AO in the s^1d^{m+1} configuration. The sudden decrease of IE at Mn and Tc is due to the fact that all the spins of the outermost s and d electrons are parallel in the ionic states and the precorrelation effect is larger for the ions than for the corresponding neutral atoms.

We define a screening constant S by

$$IE = (Z - S)^2 / 2n^2,$$
 (4)

where Z stands for the nuclear charge. We consider S for 5s and 4d in the field generated by $5s^{1}4d^{m}$ and S for 4s and 3d in the field of $4s^{1}3d^{m}$. The IE and S obtained from NHF and experiment [19] are given in Fig. 4 and Table 2, where the S values are subtracted by 18 and 36 for the first and second row transition metal atoms, respectively. We express the screening constant of 4s in $4s^{2}3d^{m}$ as $S_{4s}(4s^{2}3d^{m})$ or S_{4s} and that of 5s in $5s^{2}4d^{m}$ as $S_{5s}(5s^{2}4d^{m})$ or S_{5s} . In Fig. 4, the screening constants S_{4s} and S_{5s} are almost parallel and increase linearly as the number of the d electrons increases. The smaller values of S_{5s} -36 than S_{4s} -18

Fig. 3. The *d* ionization energies for $ns^{1}(n-1)d^{m+1}$ configurations calculated with Δ SCF

Fig. 4. Screening constants for d orbitals of $ns^{1}(n-1)d^{m+1}$ and for s orbitals of $ns^{2}(n-1)d^{m}$ calculated from the Δ SCF ionization energies. The values 18 and 36 are subtracted, respectively, for the fourth- and fifth-period atoms

indicate the incomplete screening of the Kr core compared with that of the Ar core. The NHF screening constants for 4s and 5s are described by

$$S_{4s}(4s^2 3d^m) = 17.58 + 0.95m \quad (m = 1-9)$$
 (5)

and

$$S_{5s}(5s^24d^m) = 35.11 + 0.94m \quad (m = 1-9) \tag{6}$$

Next we express the screening constant of 3d in $4s^{1}3d^{m+1}$ as S_{3d} ($4s^{1}3d^{m+1}$) or S_{3d} and that of 4d in $5s^{1}4d^{m+1}$ as $S_{4d}(5s^{1}4d^{m+1})$ or S_{4d} . The behaviors of S_{3d} and S_{4d} are more complicated than S_{4s} and S_{5s} . It is seen in Fig. 4 that the difference between S_{5s} and S_{4d} is much smaller than that between S_{4s} and S_{3d} . At the Mo, Pd, and Ag atoms, S_{4d} is almost equal or smaller than S_{5s} , reflecting a larger binding (i.e., IE) of the 4d electrons than the 5s electrons. In Fig. 5, we give the differences $S_{3d} - S_{4s}$ and $S_{4d} - S_{5s}$. It is seen that $S_{3d} - S_{4s}$ oscillates around 0.8 and the changes in $S_{3d} - S_{4s}$ are approximately independent of the increase in the nuclear charge increases. We found that NHF S_{3d} and S_{4d} are roughly expressed as

4 SC
p
it aı
nen
erir
ex p
by 6
ats
staı
con
ng c
eni
scre
pg
, aı
" <i>p</i> ()
Ϊ
$(n)^2$
ns.
mo
es fr
rgi
ene
ü
zati
onic
n i
ctrc
ele
1, S
+ u]
1)6
s1 (i
'nu
fror
ics
erg
l en
tion
izal
ion
ron
ecti
d el
R
ble
Ta

Table 2.	d electron ionizat	ion energies from	$ns^{1}(n-1)d^{m+1}$	s electron ionizati	on energies	from $ns^2(n-1)d$	", and screening c	onstants by experi	ment and ASCF
Fourth p	eriod atoms				Fifth per	riod atoms			
Atom	IE(ASCF)	S(ASCF)-18	IE(Exptl)	S(Exptl)-18	Atom	IE(ASCF)	S(ASCF)-36	IE(Exptl)	S(Exptl)-36
d-electron	2								
К	0.05813 a.u.	-0.02293	0.06143 a.u.	-0.05151	Rb	0.06012 a.u.	-0.38703	0.06535 a.u.	-0.44614
\mathbf{Ca}	0.10725	0.061059	0.13197	0.45876	Sr	0.11076	0.11736	0.12615	-0.00918
Sc	0.15964	1.30484	0.18880	1.15651	Y	0.16551	0.69863	0.19405	0.50811
Ti	0.18275	2.18629	0.22175	2.00215	Zr	0.20030	1.46828	0.23420	1.26238
>	0.20337	3.08671	0.25069	2.87576	ЧN	0.23510	2.25715	0.26150	2.10722
c	0.25928	3.83967	0.30472	3.65799	Mo	0.29845	2.90963	0.31939	2.80305
Mn	0.09458	5.69522	0.19447	5.12904	Tc	0.18699	4.55384	0.25266	4.15656
Fe	0.16461	6.27867	0.25828	5.84382	Ru	0.26088	5.11068	0.31109	4.84486
Co	0.18764	7.16220	0.28918	6.71848	Rh	0.30214	5.89058	0.35333	5.63750
ïŻ	0.20968	8.05726	0.32004	7.59986	Ъd	0.34405	6.68193	0.39545	6.44271
Cu	0.28259	8.74465	0.38734	8.35952	Ag	0.42521	7.31127	0.46368	7.14803
s electron	1								
Sc	0.19657	0.49194	0.24127	0.22139	Y	0.18092	- 0.00766	0.24401	-0.49290
Ξ	0.20260	1.45381	0.25137	1.16382	Zr	0.18576	0.95238	0.25581	0.42364
>	0.20793	2.42054	0.25970	2.11724	ЧN	0.18940	1.92266	0.25473	1.43118
Ç	0.21272	3.39097	0.26784	3.07239	Mo	0.19227	2.89944	0.26545	2.35684
Мп	0.21687	4.36564	0.27334	4.04247	Tc	0.19438	3.88247	0.26760	3.34213
Fe	0.23066	5.28318	0.29045	4.95131	Ru	0.20874	4.76937	0.27919	4.26383
പ്	0.24381	6.20681	0.30452	5.87835	Rh	0.22169	5.67066	0.29336	5.17011
ïz	0.25656	7.13470	0.31894	6.80530	ЪЧ	0.23361	6.58233	0.30624	6.08697
Cu	0.26893	8.06644	0.33254	7.73788	Ag	0.24463	7.50264	0.31766	7.01468

Fig. 5. Differences of screening constants between 4d and 5s and those between 3d and 4s given by $ns^{1}(n-1)d^{m}$ core

and

$$S_{4d}(5s^{1}4d^{m+1}) = S_{5s} + 0.70 - 0.08m \quad (m = 1-9).$$
(8)

The 3d electron moves in the field of effective charge which is smaller than that of 4s by a constant amount, while the 4d electron moves in the field of effective nuclear charge which increases faster than that for 5s as the number of the d electrons increases. Since the 4d AO is more diffuse than the 3d AO, the screening effect for a 4d electron by the other 4d electrons is smaller than that for a 3d by the other 3ds; the screening for 4d increases more slowly than that for 3d, when the number of d electrons increases. Thus, the difference between S_{3d} and S_{4d} shown in Eqs. (7) and (8) is natural. (See also the line A–B in Fig. 5 which shows the difference of the Z dependence between S_{3d} and S_{4d} since that between S_{4s} and S_{5s} is almost the same.) The growing effective nuclear charge for 4d is expected to reverse the energetic order of $5s^24d^m$ and $5s^14d^{m+1}$ at some value of m. We here note that the effective charge as well as the principal quantum number determines the ionization energies. From Eq. (4) one obtains the nuclear charge which reverses the energetic order of $ns^1(n-1)d^{m+1}$ and $ns^2(n-1)d^m$:

$$Z > nS_{(n-1)d} - (n-1)S_{ns}.$$
(9)

Using Eqs. (6), (8), m = Z - 38, and the relation (9), one may find that the energetic order reverses at an atom with Z = 39.3 and it actually happens at the Zr atom (Z = 40) in Fig. 1. Using (5), (6), m = Z - 20, and (9), on the other hand, one may see that $4s^{1}3d^{m+1}$ never becomes lower than $4s^{2}3d^{m}$ so far as we consider the neutral first row transition metal atoms.

The screening constants for s electrons given by experimental IEs in Table 2 are described by

$$S_{4s}(4s^23d^m: exptl) = 17.30 + 0.94m \quad (m = 1-9)$$
 (10)

and

$$S_{5s}(5s^24d^m: \text{ exptl}) = 34.59 + 0.94m \quad (m = 1-9),$$
 (11)

and those for d electrons are roughly expressed as

$$S_{3d}(4s^13d^{m+1}: \text{exptl}) = S_{4s} + 0.82 \quad (m = 1-9)$$
 (12)

Why do the second transition metal atoms prefer $5s^{1}4d^{m+1}$ to $5s^{2}4d^{m}$?

and

$$S_{4d}(5s^{1}4d^{m+1}: exptl) = S_{5s} + 1.02 - 0.09m \quad (m = 1-9).$$
 (13)

Using Eqs. (11), (13), m = Z - 38, and the relation (9), we find that the energetic order reverses at an atom with Z = 41.3 and it actually happens at the Nb atom (Z = 41; see [19]). The agreement between the NHF calculations and experiments is rather well. We thus confirmed the argument given by the NHF calculations.

In order to develop clear discussion, we have above fitted the screening constants given in Table 2 to a linear function of the number of electrons m. However, the screening constants in Table 2 can be directly used to derive the critical nuclear charge. Such results are discussed in the appendix.

Table 2 shows that the screening from the Ar core is almost complete but that from the Kr core is not. We thus summarize the reasons why the second row transition metal atoms prefer the configuration $5s^{1}4d^{m+1}$:

a) the incomplete screening of the Kr core, and

b) the smaller screening for 4d which is proportional to the number of 4d electrons in the $5s^{1}4d^{m}$ core.

Concerning s^1d^{m+1} and s^2d^m configurations, we finally comment that the calculated ground state for Zr is $5s^14d^{3}{}^5F$, but $5s^24d^{2}{}^3F$ is known to be the ground state experimentally [19]. This is only the case where the Hartree–Fock approximation fails to predict the true ground state among the atoms He through Xe.

2.3. Atoms In through Xe

From the atom In to Xe, the electronic configuration for the ground states is $5s^25p^m$. We compare the mean value of r, $\langle r \rangle$, of the outermost s and p orbitals of the atoms of the groups 1, 2, and 13–18 in Table 3. We see that $\langle r \rangle_s$ and $\langle r \rangle_p$ of the atoms in the same group increase as we move from the second to the fifth period with the sole exception of a small decrease in $\langle r \rangle_s$ and $\langle r \rangle_p$ at Ga compared with those of Al. We may briefly sum up the trend as

$$\langle r \rangle_{5s} > \langle r \rangle_{4s} > \langle r \rangle_{3s} \gg \langle r \rangle_{2s},$$
 (14)

$$\langle r \rangle_{5p} > \langle r \rangle_{4p} > \langle r \rangle_{3p} \gg \langle r \rangle_{2p} \tag{15}$$

and

$$\langle r \rangle_{5p} - \langle r \rangle_{5s} > \langle r \rangle_{4p} - \langle r \rangle_{4s} > \langle r \rangle_{3p} - \langle r \rangle_{3s} \gg \langle r \rangle_{2p} - \langle r \rangle_{2s}.$$
(16)

In Table 4 we list the excitation energies of the lower excited states of the second to the fifth period atoms. It is seen that the excitation energies from ns^2np^m to ns^1np^{m+1} of atoms in the groups 13 and 14 have a local maximum at the fourth period atoms as we move down the periodic table. In many cases, excitation energies of the remaining groups (1, 2, 15–18) decrease as the nuclear charge increases.

3. Concluding remarks

In this paper we developed numerical Hartree–Fock wave function from Rb to Xe. Total 332 states were calculated. We discussed why the second row transition metal

		Period			
Group	Atoms	2nd	3rd	4th	5th
				$\langle r \rangle_{ns}$	
1	Li, Na, K, Rb	3.8737	4.2088	5.2437	5.6319
2	Be, Mg, Ca, Sr	2.6494	3.2529	4.2185	4.6330
13	B, Al, Ga, In	1.9771	2.5993	2.4889	2.8445
14	C, Si, Ge, Sn	1.5893	2.2071	2.2258	2.5859
15	N, P, As, Sb	1.3323	1.9327	2.0297	2.3902
16	O, S, Se, Te	1.1420	1.7207	1.8692	2.2280
17	F, Cl, Br, I	1.0011	1.5556	1.7389	2.0944
18	Ne, Ar, Kr, Xe	0.8921	1.4222	1.6294	1.9810
				$\langle r \rangle_{np}$	
13	B, Al, Ga, In	2.2048	3.4339	3.4243	3.7780
14	C, Si, Ge, Sn	1.7145	2.7522	2.8669	3.2483
15	N, P, As, Sb	1.4096	2.3227	2.5123	2.9011
16	O, S, Se, Te	1.2322	2.0607	2.2996	2.6914
17	F, Cl, Br, I	1.0848	1.8420	2.1116	2.5018
18	Ne, Ar, Kr, Xe	0.9653	1.6630	1.9516	2.3380
			$\langle r \rangle_n$	$_{p}-\langle r\rangle_{ns}$	
13	B, Al, Ga, In	0.2277	0.8346	0.9354	0.9335
14	C, Si, Ge, Sn	0.1252	0.5451	0.6411	0.6624
15	N, P, As, Sb	0.0773	0.3900	0.4826	0.5109
16	O, S, Se, Te	0.0902	0.3400	0.4304	0.4634
17	F, Cl, Br, I	0.0837	0.2864	0.3727	0.4074
18	Ne, Ar, Kr, Xe	0.0732	0.2408	0.3222	0.3570

Table 3. Mean value of r for the atoms with the ground state configuration of $ns^{1}np^{m}$ (all in a.u.)

Table 4. Excitation energies from the ground configuration of $ns^1 np^m$ (all in a.u.)

			Peri	od			
Group	Atoms	States		2nd	3rd	4th	5th
1	Li, Na, K. Rb	ns(1)	² S	0.00000	0.00000	0.00000	0.00000
	, ,	np(1)	^{2}P	0.06766	0.07250	0.05164	0.04737
		(n-1)d(1)	² D			0.08908	0.07740
2	Be, Mg, Ca, Sr	ns(2)	¹ S	0.00000	0.00000	0.00000	0.00000
		ns(1)np(1)	^{3}P	0.06152	0.06792	0.06243	0.03494
			¹ P	0.17829	0.14351	0.10185	0.09079
		ns(1)(n-1)d(1)	³ D			0.08093	0.06115
			۱D			0.10724	0.09039
13	B, Al, Ga, In	ns(2)np(1)	² P	0.00000	0.00000	0.00000	0.00000
	, , ,	ns(1)np(2)	^{4}P	0.07840	0.08584	0.11237	0.08582
			^{2}D	0.21719	0.18502	0.21282	0.17677
			² S	0.28097	0.23146	0.26013	0.22045
			^{2}P	0.35002	0.27063	0.29707	0.25251

Table 4. (C	Continued)
-------------	------------

	Atoms	States	Period				
Group				2nd	3rd	4th	5th
14	C, Sl, Ge, Sn	ns(2)np(2)	^{3}P	0.00000	0.00000	0.00000	0.00000
			^{1}D	0.05729	0.03915	0.03838	0.03478
			^{1}S	0.13901	0.09528	0.09335	0.08473
		ns(1)np(3)	⁵ S	0.08940	0.09132	0.11446	0.08102
			зD	0.29425	0.23426	0.25397	0.20488
			³Р	0.35090	0.27407	0.29317	0.24021
			¹ D	0.51900	0.38795	0.40169	0.33501
			^{3}S	0.54650	0.40510	0.41626	0.34650
			^{1}P	0.57283	0.42519	0.43826	0.36811
15	N, P, As, Sb	ns(2)np(3)	⁴ S	0.00000	0.00000	0.00000	0.00000
	1. Sec. 1. Sec		² D	0.10476	0.06991	0.06649	0.05910
			^{2}P	0.17283	0.11548	0.10983	0.09767
		ns(1)np(4)	⁴ <i>P</i>	0.41265	0.30226	0.31127	0.24728
			^{2}D	0.61729	0.44114	0.44191	0.36131
			^{2}S	0.71752	0.50945	0.50705	0.41914
			² P	0.81699	0.57578	0.56590	0.46764
16	O, S, Se, Te	ns(2)np(4)	^{3}P	0.00000	0.00000	0.00000	0.00000
			^{1}D	0.08013	0.05254	0.04865	0.04266
			^{1}S	0.19838	0.13022	0.12059	0.10577
		ns(1)np(5)	³Р	0.62549	0.42603	0.41609	0.32851
			^{1}P	0.93736	0.63364	0.60419	0.48907
17	F, Cl, Br, I	ns(2)np(5)	^{2}P	0.00000	0.00000	0.00000	0.00000
		ns(1)np(6)	² S	0.87811	0.56531	0.52983	0.41572
18	Ne, Ar, Kr, Xe	ns(2)np(6)	¹ S	0.00000	0.00000	0.00000	0.00000
		ns(2)np(5)(n + 1)s(1)	³ P	0.55478	0.40077	0.35343	0.30878
			^{1}P	0.56089	0.40676	0.35958	0.31412
		ns(2)np(5)(n+1)p(1)	^{3}S	0.61509	0.44139	0.39058	0.33801
			зD	0.62107	0.44906	0.39859	0.34626
			^{1}D	0.62283	0.45082	0.40031	0.34791
			¹ S	0.62729	0.45335	0.40205	0.34889
			³ P	0.62442	0.45331	0.40300	0.35080
			1P	0.62442	0.45331	0.40300	0.35080
		ns(2)np(5)nd(1)	³ Р		0.47882	0.41963	0.34719
			${}^{3}F$		0.48244	0.42466	0.35716
			${}^{1}F$		0.48455	0.42788	0.36555
			зD		0.48636	0.43029	0.36881
			¹ D		0.48636	0.43029	0.36881
			¹ P		0.48649	0.43102	0.37284

atoms prefer the configuration $5s^{1}4d^{m+1}$. The reasons are: (a) the incomplete screening of the Kr core and (b) the smaller screening for 4d which is proportional to the number of 4d electrons in the $5s^{1}4d^{m}$ core.

In atomic and molecular calculations, we often use analytical approximations of Hartree–Fock wave functions. The excitation energies, the mean distance of r given in this paper, the electron affinities, and the ionization energies given in

Fig. 6. Nuclear charge which gives $ns^{1}(n-1)d^{m+1}$ stabler than $ns^{2}(n-1)d^{m}$. a) For Sc to Cu. b) For Y to Ag

the previous papers [9, 13–15] would be useful for constructing the basis sets for molecules including the transition metal atoms. Full details of the present results are available on 3.5 in diskettes upon request to TK or HT.

Acknowledgement. This work has been supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan.

Appendix

The critical nuclear charge specified by the inequality (9) can also be directly calculated from the screening constants given in Table 2. The results are depicted in Fig. 6. For the first transition metal atoms, the NHF and experimental screening constants give the same stable configurations with the sole exception of Ni which will be explained below; in most cases $4s^23d^m$ is stabler than $4s^13d^{m+1}$. The results confirm what we have discussed in the main text. One may wonder why Ni $4s^13d^9$ is stabler than $4s^23d^8$ in experiment although the experimental ground configuration is $4s^23d^8$. Moore [19] gives the ground state as $4s^23d^{8.3}F_4$. Even if one adopts the gravity of the energetic states generated from the same spatial and spin configuration does not change. In Ni, however, the gravity of $4s^23d^8.3F_4$, 3F_3 , and 3F_2 in 240 cm⁻¹ higher than that of $4s^13d^{9.3}D_3$, 3D_2 , and 3D_1 . So far as we discuss the electronic structure under the LS coupling scheme, we may change the experimental ground configuration from 3F to 3D .

In the second row transition metal atoms, the calculated nuclear charge which satisfies the relation (9) always predicts that $5s^{1}4d^{m+1}$ is stabler than $5s^{2}4d^{m}$ except for Y and Tc (see Fig. 6b). Except for Tc, this is what we concluded in the main text based on a fitting of screening constants S to a linear function of number electrons m. We thus see good agreement between the NHF calculations and experiment, confirming again the discussion in the main text.

References

- 1. Froese C (1966) J Chem Phys 45:1417
- 2. Froese-Fischer C (1972) At Data 4:301; (1973) At Data Nucl Data Tables 12:87
- 3. Mann JB (1973) At Data Nucl Data Tables 12:1
- 4. Fraga S, Karwowski J, Saxena KM (1976) Handbook of atomic data. Elsevier, Amsterdam
- 5. Froese-Fischer C (1977) The Hartree-Fock method for atoms. Wiley, New York
- 6. Bunge CF, Barrientos JA, Bunge AV, Cogordan JA (1992) Phys Rev A46:3691
- 7. Partridge H (1987) NASA Technical Memorandum 89449, Ames Research Center, Moffett Field, CA
- Partridge H (1989) NASA Technical Memorandum 101044, Ames Research Center, Moffett Field, CA
- 9. Koga T, Tatewaki H, Thakkar AJ (1994) J Chem Phys 100:8140
- 10. Hartree DR, Hartree W (1936) Proc Roy Soc (London) A154:588
- 11. Froese C (1968) J Chem Phys 47:4010
- 12. Hay PJ (1977) J Chem Phys 66:4377
- 13. Tatewaki H, Koga T, Sakai Y, Thakkar AJ (1994) J Chem Phys 101:4945
- 14. Tatewaki H, Koga T (1994) Chem Phys Lett 228:562
- 15. Tatewaki H, Sekiya M, Sasaki F, Matsuoka O, Koga T (1995) Phys Rev A51:197
- 16. Froese-Fischer C (1972) Comput Phys Commun 4:107
- 17. Tatewaki H, Taketa K, Sasaki F (1971) Int J Quantum Chem 5:335
- 18. Tatewaki H, Tanaka K (1974) J Chem Phys 60:601
- 19. Moore CE (1971) Atomic Energy Levels, NSRDS-NBS 35, Vols 1-3, Nat. Bur. Stand. US, Washington